1a) Matrix A is given by

$$
\boldsymbol{A}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)
$$

compute the determinant of the matrix, and decide if the vectors $\mathbf{u}=(2,1,0)$, $\mathbf{v}=(1,1,1)$ and $\mathbf{w}=(1,2,3)$ (the rows of the matrix) are linearly independent or linearly dependent.

1b) For two matrices $\boldsymbol{A}=\left(\begin{array}{cc}2 & -1 \\ 4 & -1\end{array}\right), \boldsymbol{B}=\left(\begin{array}{cc}-1 & 3 \\ 0 & 1\end{array}\right)$.
Find the inverse matrix \boldsymbol{A}^{-1} and compute matrix \boldsymbol{X} given by matrix equation $\boldsymbol{A} \cdot \boldsymbol{X}=\boldsymbol{B}$.
a) $\operatorname{det} \mathrm{A}=0$ vectors are linearly independent and $\boldsymbol{X}=\left(\begin{array}{cc}1 / 2 & -1 \\ 2 & -5\end{array}\right)$
b) $\operatorname{det} \mathrm{A}=0$ vectors are linearly dependent and $\boldsymbol{X}=\left(\begin{array}{cc}1 / 2 & -1 \\ 2 & -5\end{array}\right)$
c) $\operatorname{det} \mathrm{A}=3$ vectors are linearly independent and $\boldsymbol{X}=\left(\begin{array}{cc}1 / 2 & 1 \\ -2 & -4\end{array}\right)$
d) $\operatorname{det} \mathrm{A}=-1$ vectors are linearly independent and $\boldsymbol{X}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2) Find equation of the tangent line to the graph of function $f(x)=\sqrt{x}-\frac{x^{2}}{2}$ at point $\left[x_{0}, f\left(x_{0}\right)\right]$, if $x_{0}=1$.
a) $y=2 x+3$
b) $y=x-2$
c) $y=1-1 / 2 x$
d) $y=4-2 x$.

3 Find the antiderivative (compute indefinite integral) F to function $f(x)=3 \sin (2 x)$ and then compute the area bounded by the graph of this function and x-axis on interval $x \in\left\langle 0, \frac{\pi}{2}\right\rangle$.
a) $F(x)=2 \sin (2 x)$ and area is 3
b) $F(x)=6 \cos (2 x)$ and area is 2
c) $F(x)=2 \sin (2 x)$ and area is 0
d) $F(x)=-\frac{3}{2} \cos (2 x)$ and area is 3 .

Solution:

1a) $\operatorname{det} \boldsymbol{A}=0$ computed by either Sarus's rule (or by extension along a row or a column). Which implies that the rows are linearly dependent.

$$
\operatorname{det} \mathrm{A}=\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|=2 \cdot 1 \cdot 3+1 \cdot 2 \cdot 0+1 \cdot 1 \cdot 1-0 \cdot 1 \cdot 1-1 \cdot 2 \cdot 2-3 \cdot 1 \cdot 1=0
$$

1b)

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cc}
2 & -1 \\
4 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}
2 & -1 & 1 & 0 \\
4 & -1 & 0 & 1
\end{array}\right) \sim\left(\left.\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array} \right\rvert\, \begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{lll}
2 & 0 & -1 \\
0 & 1 & 1 \\
0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & -1 / 2 \\
0 & 1 & 1 / 2 \\
0
\end{array}\right) \rightarrow \\
& \rightarrow\left(\begin{array}{cc}
-1 / 2 & 1 / 2 \\
-2 & 1
\end{array}\right)=\boldsymbol{A}^{-1} \\
& \boldsymbol{A} \cdot \boldsymbol{X}=\boldsymbol{B} \rightarrow \boldsymbol{A}^{-1} \cdot \boldsymbol{A} \cdot \boldsymbol{X}=\boldsymbol{A}^{-1} \cdot \boldsymbol{B} \rightarrow \boldsymbol{X}=\boldsymbol{A}^{-1} \cdot \boldsymbol{B} \\
& \boldsymbol{X}=\left(\begin{array}{cc}
1 / 2 & -1 \\
2 & -5
\end{array}\right)
\end{aligned}
$$

2)

$$
f(x)=\sqrt{x}-\frac{x^{2}}{2} \rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x}}-x \text { and } f(1)=\frac{1}{2}, f^{\prime}(1)=-\frac{1}{2}
$$

$$
\text { tangent line is } y=\frac{1}{2}-\frac{1}{2}(x-1)=1-\frac{1}{2} x
$$

3)

$$
\begin{aligned}
& \int 3 \sin (2 x) \mathrm{d} x=^{1} \int \frac{3}{2} \sin (t) \mathrm{d} t=-\frac{3}{2} \cos t+C=-\frac{3}{2} \cos 2 x+C \\
& \int_{0}^{\frac{\pi}{2}} 3 \sin (2 x) \mathrm{d} x=\left[-\frac{3}{2} \cos 2 x\right]_{0}^{\frac{\pi}{2}}=\frac{3}{2}-\left(-\frac{3}{2}\right)=3
\end{aligned}
$$

${ }^{1}$ The substitution $t=2 x$ has been used. Then $\mathrm{d} x=\frac{1}{2} \mathrm{~d} t$. C is integration constant.

