1) Simplify the expression:

$$
\begin{gathered}
\left(\frac{a^{2}}{a+2}\right)^{-1} \cdot\left(\frac{a^{2}-4}{a}\right)^{-1} \\
\text { a) } \frac{1}{a-2} \\
\text { b) } \frac{a^{2}-4}{a+2}
\end{gathered} \begin{array}{lll}
\text { c) } \frac{1}{a(a-2)} & \text { d) } \frac{1}{a+2}
\end{array}
$$

2) Solve the inequality:

$$
|2 x-5| \leq 3
$$

a) $x \in\langle-5,4\rangle$,
b) $x \in\langle 0,3\rangle$,
c) $x \in\langle 3,5>$,
d) $x \in<1,4>$.
3) Solve the following system of equations (for all couples of x and y):

$$
\begin{array}{r}
x-y=1 \\
x^{2}-2 y-2=3
\end{array}
$$

a) $[5 ; 4],[0 ; 1 / 2]$
b) $[3 ; 2],[-1 ;-2]$
c) $[3 ; 2] \quad d)$ "there is no solution".
4) Find solution (in real numbers) of the following equation:

$$
\sqrt{x}-\frac{3-x}{\sqrt{x}}=0
$$

a) $x=1$
b) $x=0$
c) $x=3 / 2$
d) $x=4$.
5) The circle given by equation $x^{2}+y^{2}+8 x-6 y+9=0$ has its center at point S and radius r. Find S and r.
a) $S=[4 ;-3], r=3$
b) $S=[-4 ; 3], r=3$
c) $S=[4 ;-3], r=4$
d) $S=[-4 ; 3], r=4$.
6) The surface area of a cylinder with diameter 12 cm is $96 \pi \mathrm{~cm}^{2}$. Compute the volume of this cylinder.
a) $96 \pi \mathrm{~cm}^{3}$
b) $72 \pi \mathrm{~cm}^{3}$
c) $64 \pi \mathrm{~cm}^{3}$
d) $148 \pi \mathrm{~cm}^{3}$.
8) Find the equation of the line intersecting points $A=[1,0]$ and $B=[2,2]$.
a) $y=x-1$
b) $y=2 x-1$
c) $y=2 x-2$
d) $y=3-x$.
9) What is the chance (in percent rounded down in whole numbers) that the number you will get as a sum of throw of two six sided dices is $5,6,7$ or 8 .
a) 30%
b) 55%
c) 60%
d) 40%.
10) In recent years the number of people living in a small city was rising by 3% per year. Now at 2023 there is 5500 people living in the town and the magistrate needs to plan how many will be living there 3 years later if the grow rate remains the same. Which of these possibilities is most precise guess to how many people will be in town in $2026 ?$
a) 5509
b) 4750
c) 6010
d) 6535 .

Solution:

1)

$$
\left(\frac{a^{2}}{a+2}\right)^{-1} \cdot\left(\frac{a^{2}-4}{a}\right)^{-1}=\left(\frac{a+2}{a^{2}}\right) \cdot\left(\frac{a}{a^{2}-4}\right)=\frac{a(a+2)}{a^{2}\left(a^{2}-4\right)}=\frac{1}{a(a-2)}
$$

2) Absolute value change the sign if its argument is negative so we have

$$
\begin{array}{r}
\text { for } \quad 2 x-5 \geq 0 \quad \text { is } \quad|2 x-5|=2 x-5 \leq 3, \\
\text { we have } \quad 2 x \leq 8 \text { and then } x \leq 4, \\
\text { for } \quad 2 x-5<0 \quad \text { is }|2 x-5|=5-2 x \leq 3, \\
\text { we have } 2 x \geq 2 \text { and then } x \geq 1 .
\end{array}
$$

Taking results together we see that $x \in<1,4>$ (also sometimes written as $x \in[1,4]$).
3) From the first equation we have

$$
\begin{aligned}
& x=y+1 \text { inserting into second equation we get } \\
& y^{2}+2 y+1-2 y-2=3 \\
& y^{2}=4 \text { has solutions } y=2, \quad y=-2 .
\end{aligned}
$$

computing appropriate values of x from first equation gives $[3,2],[-1 ;-2]$.
4)

$$
\sqrt{x}-\frac{3-x}{\sqrt{x}}=0 \Rightarrow \sqrt{x}=\frac{3-x}{\sqrt{x}} \Rightarrow x=3-x \Rightarrow x=3 / 2 .
$$

5) We will "complete the square for x and y "

$$
\begin{aligned}
& x^{2}+y^{2}+8 x-6 y+9=0 \\
& \Rightarrow x^{2}+8 x+16+y^{2}-6 y+9-16=0 \\
& \Rightarrow(x+4)^{2}+(y-3)^{2}=16
\end{aligned}
$$

Now from the knowledge that the equation for a general circle with center $S=\left[s_{1} ; s_{2}\right]$ and radius r is $\left(x-s_{1}\right)^{2}+\left(y-s_{2}\right)^{2}=r^{2}$ we can deduce that $S=[-4 ; 3], r=4$.
6)

$$
\begin{aligned}
S & =2 \pi r^{2}+2 \pi r h=96 \pi \mathrm{~cm}^{2} \text { we know that } d=12 \rightarrow r=6 \\
S & =2 \pi \cdot 36+2 \pi \cdot 6 \cdot h=72 \pi+12 \pi \cdot h=96 \pi \\
& \rightarrow 12 \pi \cdot h=24 \pi \rightarrow h=2 \\
V & =\pi r^{2} h=\pi \cdot 36 \cdot 2=72 \pi \mathrm{~cm}^{3} .
\end{aligned}
$$

7)

$$
\begin{aligned}
& a+b+c=(b-d)+b+(b+d)=15 \rightarrow 3 b=15 \rightarrow b=5 . \\
& a \cdot b \cdot c=(b-d) \cdot b \cdot(b+d)=80 \rightarrow(5-d) \cdot 5 \cdot(5+d)=80, \\
& \rightarrow 125-5 d^{2}=80 \rightarrow d^{2}=9 \rightarrow d=3 .
\end{aligned}
$$

So we know that $b=5$ and $d=3$ then $a=b-d=2$ and $c=b+d=8$.
8) We are looking for a equation of the line $y=k x+q$, so we need to find numbers k and q such that the line goes through both points. Inserting points A and B into the equation (i.e. $x=1, y=0$ and $x=2, y=2$) we get

$$
\begin{aligned}
& y=k x+q \rightarrow 0=x+q \text { and } 2=2 x+q \\
& q=-x \rightarrow 2=2 x+(-x) \Rightarrow x=2 \rightarrow q=-2 .
\end{aligned}
$$

9) There is $1 / 6$ chance to get $1,2,3,4,5,6$ on first and second dice. So each combination has $1 / 36$ chance. There are 4 ways how to get $5(1+4,2+$ $3,3+2,4+1), 5$ ways to get 6,6 ways to get 7 and 5 ways to get 8 . So together we have 20 out of 36 chance to get number between 5 and 8 . And $20 / 36=5 / 9=55.5$ percent.
10)

$$
5500 \cdot(1,03)^{3}=6009,9985 \sim 6010
$$

