

MASARYK INSTITUTE OF ADVANCED STUDIES

SPECIMEN OF ADMISSION TEST Master's degree programme – Academic Year 2022/2023

- 1) Our economy has a positive output gap. Which of these would you expect in the described economy as the developed EU economy type?
- a) Inflation increases, so does the economic output; There is high unemployment rate
- b) Inflation increases, so does the economic output, there is a low unemployment rate.
- c) Inflation is stable, so is the economy output; there is a low unemployment rate.
- d) Inflation is falling, economy output is growing, there is low unemployment rate;
- 2) A production manager of a very small firm is trying to achieve an optimal input structure minimizing total costs. The total physical product is 150 units per hour, the price of labor factor is \$10 per hour, and the price of capital factor is \$25 per hour. The marginal rate of technical substitution of factor L for factor K is equal to 1.5. The manager minimizes the total costs, when he decides ...
- a) To increase the amount of factor K (2 units), decrease the amount of factor L (1 unit) to decrease the total costs.
- b) To increase the amount of factor L (1 unit), decrease the amount of factor K (1,5 unit) to decrease the total costs.
- c) To increase the amount of factor L (2 units), decrease the amount of factor K (1 unit) to increase the total costs.
- d) To increase the amount of factor K (2 units), decrease the amount of factor L (1 unit) to increase the total physical product.
- 3) Bicycles are manufactured using an automated production line with \$200,000 annual fixed costs and \$10 unit variable costs and a \$65 selling price. What is the lowest price acceptable for the company in the short run?
- a) \$10 selling price, b) \$65 selling price, c) \$5 selling price, d) \$0 selling price.
- 4) A company calculates its weighted average costs of capital. Its return on equity (ROE) is 20%, the interest rate is 4%, and the corporate income tax rate is 15%. Its total equity is 100000 \$, and the total liabilities are 50000 \$.
- a) The weighted average capital costs (WACC) are 0,20 (20%).
- b) The weighted average capital costs (WACC) is 0,15 (15%).
- c) Weighted average capital costs (WACC) is 0,04 (4%)
- d) Weighted average capital costs (WACC) are impossible to calculate

Solution: 1b; 2b; 3a;4b

5) Let f(x) = a x, pro 0 < x < 10, where a is an unknown constant. What should be the magnitude of this constant a so that f(x) is the probability density of the random variable X?

a)
$$a = 5$$

b)
$$a = \frac{1}{5}$$

c)
$$a = \frac{1}{10}$$

d)
$$a = \frac{1}{50}$$

Solution:

In general, the following applies to the probability density:

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Then the constant a, we determine from the following equation:

$$\int_0^{10} ax \ dx = 1, \text{ so: } 50 \cdot a = 1, \quad a = \frac{1}{50}$$

6) The random variable X, expressing the change in work performance when the remuneration system is changed, has the probability density:

$$f(x) = \frac{3}{8} x^2; \quad 0 < x < 4$$
= 0 ; for other values of x

The mean E(X) of this random variable is:

a)
$$E(X) = 3$$

b)
$$E(X) = 6$$

c)
$$E(X) = 24$$

d)
$$E(X) = 36$$

Solution:

$$E(X) = \int_{0}^{4} x \frac{3}{8} x^{2} dx = \frac{3}{8} \left[\frac{x^{4}}{4} \right]_{0}^{4} = 24$$

7) The manager records in the table the completion of the task in various combined deployments of four workers marked P1, P2, P3, and P4. If the i-order worker has a value of $P_i = 0$, the given worker is not assigned to the monitored task; if $P_i = 1$, the given worker is assigned to the monitored task. The variable R indicates the completion of the task at a value of R = 1 and the failure of the task at R = 0 (see table).

P_1	P_2	P_3	P_4	R
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	1	0	0	1
1	0	0	0	0
0	0	1	1	1
0	1	1	0	1
1	1	0	0	1
1	0	1	0	0
0	1	0	1	1
1	0	0	1	1
0	1	1	1	1
1	1	1	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

The manager suspects that among the four monitored workers, some are redundant (without affecting the performance of task R).

These redundant workers are:

- a) P_1 and P_3
- b) P_1 and P_4
- c) P_2 and P_4
- d) no worker is redundant

Solution:

From the table or the minimized combination equation: $R = P_2 + P_{4_i}$ it follows that the redundant workers are P_1 and P_3 .

8) The company, based on past data, compiled a regression model of demand d (thousand CZK/year) for its dominant product, which is expressed by the following equation:

$$d = f(x_1, x_2) = 10 + 0.1x_1 - 0.5x_2;$$

where x_1 is the annual investment (million CZK/year), and x_2 is the average price of the dominant product (thousand CZK/pc).

The company can regulate factors x_1 and x_2 within the following limits: $x_1 \in \langle 1; 5 \rangle$ million $\frac{\text{CZK}}{\text{year}}$, $x_2 \in \langle 0.1; 0.5 \rangle$ thousand $\frac{\text{CZK}}{\text{pc}}$

The maximum annual demand for the dominant product $d = f(x_1, x_2)$ is equal to:

- a) 10.05 thousand pc/year
- b) 10.25 thousand pc/year
- c) 10.45 thousand pc/year
- d) 10.75 thousand pc/year

Solution:

The best setting (for maximum demand) is x_1 at the maximum, i.e. $x_1=5$ million million $\frac{CZK}{year}$ and x_2 at the minimum (price-elastic demand), i.e. $x_2=0.1$ thousand $\frac{CZK}{pc}$. Then $d=f(x_1,x_2)$ is:

$$d = f(x_1, x_2) = 10 + 0.1 \times 5 - 0.5 \times 0.1 = 10.45$$
 thousand pc/year